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TECHNICAL NOTE NO. 1225

THE FORMATICN AND STLBILITY OF NOﬁMAL
SHOCK WAVES IN CHANNEL FLOWS

By Arthur Kantrowitz
SUMMARY

There 1s experimental evidence that channel flows involving
shock-free deceleration through the spesd of sound are unstebls.
An analysis of nonviscous unsteady charmel flow has. been made to
gain some insight into this apparent Instability, to provide some
information on the factors deternining the minimum shock intenslty
for a stable flow, and ta study in gensral the formation ahd motlon
of shocks in chamnel flows. It 1s hoped that this treatment will
te useful in two ways. First, the theory will have dirsct appli-
catlon to the study of nommal shocks ocenring in supersonic nozzles
and diffusers. ©Second, it might be useful in leading to the
solution of the more difficult problems of the formation and
8tability of shocks in two and three dimensions.

The anelyesis is 4lvided into two parts. In pert I, Riemasnn's
theory of the propazation of finite-amplitude disturbances in a
homogeneous medium is extended to the case where upsiream-moving
pulses arp superposed on a decelerating tramsonic chennel flow.
Shock waves are formed as the pulse is propagated, as in Riemann's
problem. If the 1ntenaity of the ghocks is sssumed to be very small,
the pulse epproaches = txanped state in which a portion of the
dscelereting chammel flow 1z converted to an accelerating flow which
is an alternate steady-state solution for the channel. To the order
of accuracy of the theory of part I, the trapped pulse becomes
stationary in the sonic reglon of the chamnel and, thus, the flow
has neuntral stability.

In part IT, the assumption of weak shocks is dropped and the
motion of shock waves is considered more accurately. It is found
that trapped expansion pulses are consumed by the shock motion and
trapped compression pulses Inevitably grow. Thus, 1t is concluded
that smooth trensonic deceleretion is unstable to compression pulses
coming from the rear of the chamnnel.
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A similar enalysis is.mede for the case where the shock wave
forms a part of the equilibriuwm chennel flow. The shock position
is found to be stable in diverging chehnels and unstaeble in
converging chemnels. This enalysis leads also to suggestions for
the design and testing of supsrsonic diffuscrs.

INTRODUCTION

Experimental investigation of transonic channel flows has
established a striking difference between the processes of
ecceleration and deceleration through the spesd of sound. In a
de Laval nozzle, & gas is accelerated to the veloclty of sound In
the converging (that is, converging downstreem) pert of the nozzle
and 18 accelerated further to supersonlc veloclties in the diverging
part. If the nozzle ie shaped to avoid the condensation of
coupression waves, the acceleratlon through the speed of sound can
be made very smoothly (without shock waves).

As far as is known, the reverse flow, smooth deceleration
through the speed of sound in a chennel flow, has nevsr becn
observed. The exporimental situation can be swmed up briefly as
follows: In theo procoss of etarting the supersonic flow, a normal
shock alweys forms ahead of the converging part of the channel
(supersonic diffuser). By sultebly changing the velocitles and
pregsures at the onds of the diffussr, the normal shock can be made
to Jump to the diverging part. With further changes In velocitles,
prossures, and/or geometry, the normal shock cen be pushed up the
diverging chennel and its intonsity reduced somewhat. However,
before the shock can be mads to disappear, it suddenly (to visual
observaticn) Jumps to a position ahezd of the converging part of the
diffuser end the starting process must begin agein, The sxperiments
gtrongly indicate, thercfore, that smooth deceloration through the
apeed of sound in a chemnnel flow is unstable.

An enalysis of this apparent instgbility is the central
problem of this peper. Specifically, the etebility of transonic
decelerating channel flow to a special type of disturbance coming
from the rear of the chamnel is considered. The snalysis is
rostricted te channels of slowly varying cross section so that a
quasl one~dimsnsional treatment cen be ussd. This treatment is
based on Riemann's treatment (reference 1) of plane waves superposed
on a hanogenoous modium. A part of Riomenn's paper will bo
varaphrased herein to put hls results Into a form sultable for
extensiopn to channel-flow problems.

The author 1s very grateful for the helpful discusslion of -
these problems with Mr, A, Kahane and Mr. Lester Lees.
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RIEMANN 'S TREATMERT OF THE PROPAGATION OF FINITE PLANE
DISTURBANCES IN A HOMOGENEQUS MEDIUM

In 1859, Riemenn published his great paper (reference 1) on

the propegation of plame aorial waves of finlte amplitnde. Starting

vith the one-dimensionel equatione of motion snd continuity and
esstiming isentropic flow, he shows (emong other things) that:
(1) a disturbance initially confined to a finite reglon will spread
out into waves propageted in both dirsctione from the source, snd
(2) thet compression fronts in the propagated waves will steepen
indefinltely, and will eventually form a compression shock.

Riemenn starts with the one-dimensional egquations of motion
end continuity (assuming isentropic flow of a perfect ges):

ou du . 2 9loglf .
T i ox Te dx 0 (1)

and ,
P, 3w . 2
ot * ox 0 @)

(Symbols are defined in appendix A.)

He then multiplies equation (2) by i’% and adds to equation (1)
ohtalning
é_'l}_i.aalogp_‘_(uta)<§ita§_logp)=o (3)
ot ot Ax ox

Assuning ell changes to be isentropic and introducing 7y = 1.4
(the velue for room-temperature air) yilelds

_ 248 _ =aa

Hence, & d log p = 4 Sa. Using this result permits equation (3).
to Bs written

(ui‘5a)+(ui‘a.)sa?c(ui'5a)=o (5)

&l
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It is convenient to introduce the symbols P = u + 5a
and Q = u - Sa which occur frequently in these equations.

With these symbols u+a=32-§-—23 and u-a=?2_*5:_39..

The equations(5) can be written

oP + 20 OP

&L+ 32___9 =0 | (6)
and

39 , 2P + 30 98

o5 onx"% (7)

If the disturbances are not too large (Ju}l < a) these
equations represent disturbances moving in the ¢x dlrsctions,

respectively, since for this case 3@__%_2_(1> 0 eand 21’—1;—-39 <0.

If, for example, there are no disturbances In a given region
moving In the -x direction, then Q = Const. = -5&8 where &gy
is the veiocity of sound in air at rest in this region. In thls
cage, it can be seen from cquation (7) that Q remains comstant,

since g% = 0, even in the presente-of a P wave. Thus, waves

noving In one direction in a homogeneous medium do not reflect
waves moving In the opposite dilrection. 3

In the analysis of channel flow, finite pulses ooming from
the rear of the channel will be assumed. The term "rinite pulse
is used to denote a finite disturbed region bounded on both sides
by undisturbed fluld (or equilibrium flow in a channel-flow
problem). A finite pulse will consist of at least one phepe where
the pressure drops, which will be called the expansion phase, and
at ‘least one compreseion phass wherse the pressure rises with time.

) - .
Tt can be shown that the integrel J P ax (or ‘/ Q dx), which

will be caelled the pulse area, teken over tho wholo of a Pinite
pulse does not change with time when pulses moving in only one
direction are present. Integrating equation (6) with respect to =x
gives .

%f? ax +‘f32_;_?.9. aP = O

]
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Since P wvanishes at both ends of the pulse, the secsnd integral
s 0 for Q = Const. and P dx (or similarly Jaax) is
constant In time!‘.

Riemann used equations (6) and (7) to show that compression
fronts In these waves steepen to form shocks while expansion waves
flatten out indefinitely. This information can be obtained for
the case where only waves moving in ons direction are present by
a8 different approach which will be readily extended to the problems
considered later by exemining equation (7). Differentiating
equation (7) with respect to x, assuming P = Const., end intro-

ducing € = -g%, there ie obtained

% .22+ 3.3 |
3% 5 ox. 5‘2 (8)

For the case where only Q disturbances are present the guantity ¢
may bs understood physicelly as twice the velocliy gradlent in the

disturbence since u = E—%—Q

Conelder now that the point under observation moves with the
propagation veloclty and let 8¢  genoto the rato of change of ¢

‘ dat
for this point. Now

B€ _ 0€ , Bx o€
dt ot a4t ox.

where % is the local propagetion velocity 2_2_;_39.... Hence,

*A more general form of this. thesorem cen be obtained as follows:
let f(P) be an arbltrary well-behaved function of P. Multiply

equation (6) by d—ié__-égl end integrate as beforse. It follows
. “ - . . .
that 5%‘/ £(P)dx = 0 where the integration 1s over the whole of

a finite pulse. Thua, the mass, impulse or energy cerried by a
pulse will also remain constent and any of these quantities could
be used. The quentity L,/ Pdx 1s convenient since P appears

directly in the equations.
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equation (8) can be written . S

2 . o =
§u§ = - 3-€ . . :-:_;
it 5 R =

or e —
€._1 =

€ ZgE+1 " ) =

5 =

vhere € is the valus of € at % = 0. Now, if € 4is positive, ¢
decreases toward zero as the wave 1s propagated. If € 1ls

negative, |€| increases indefinitely, becoming infinite at t = = é%. -

For the came where only Q waves are present in the region under
conazlderation, positive and negative values of € can be identified
from the fundamsntal equations as expansion and compression waves,
respectively. Thus, compresslon waves sisepen to form shocks and =
rerefaction weves flattsn out indefinitely.

I

GENERAL PLAN OF THE CHANNEL-FLOW ANALYSIS

The general plan of this treatment can best be explained by
coneidering the central problem, the stability of esmooth decelemration
through the speod of sound, from a physical point of view. In sich
e flow, disturbsnces starting in the rear of the channel will be
trapped in the sonic reglon. The presence of thls disturbance trap
constlitutes a distinct difference between this flow and smooth flows -
known to be stable. ‘ ' =

Two typeos of procegses which govern the behavior of pulses In .
the gonic region are considersd sepearatsly in parts I and IT of =
this paper. First, there are isentropic processes simllar to the o
propagation of waves of finits emplitude considersd by Riemamn.
Shpcks form in the,chermel Tlow as in Riemann's case. If these -
ghock waves aré essumed to be of very emall intensity, it is shown
in part I that a pulse approaches a statlonary state. Thus, the R
emplitude, shaps, and ’osition of a p%lse approach éssymptoticelly
what will be called a 'trapped pulss. The motion of the shock
waves In these trappod pulses is consldersd more accurately in
part IT, and 1t 1s found that the shock moves and causes the pulse
to be consuned or to grow, depending on 1its sign. In cases where
the intensity of the shocks involved 1s not too large, the
congsumption process is much slower then the treapping process, In v
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these cases, it is possible to obtain e fairly complete history of
the behavior of a pulse without considering the interaction of
these two processes. Thus, in part I, the rapid trepping process
1ls considered ard the slow consumption of the pulse by shocks is
neglected. In part II, the consumption of fully trapped pulses
by shock waves is discussed.

A ginmilar analysis is mede for the case where a shock wave
forms part of the initial channel flow. In this case, disturbances
from the rear serve to move the shock to a new position and, if
changes in shock strength ere neglected, it is found that the
pulses in this cese are also treapped as shock displacements (shown
in part I). Here again, the slower effects on this shock displace—
ment are discussed in part IT, the changes in shock strength being
included. TIn this way, the stability of shock waves in channel
flows is studied. .

The boundary-—layer eoffects are nsglected entirely in this
paper. It is well known, however, that such effects are important
in channel flows involving shock waves.. The results cbtained can
therefore, at best, be only quelitatively sfmilar to experimental
results. Perheps it will be poessible eventually to add boundary-—
leyer effects for cases whore they ave important, thus following
& procedure fregquently used in gas dynamics.

It should be pointed out that Ynformaticn of the type sought
in this anelysis cannot be found by introducing the acoustic
approximation; that is, that the digturbence velocities are negligible
compared with the propagation velocity. In the sonic region of a
channel, the propagation velocity of an upstream-moving pulse is
close %o zero. On the other hand, if the acoustic approximetion is
introduced, the disturbance velocities tend to become infinite in
the sonic region (reference 2), Thus, it is clear that the acoustic
approximation cannot be used to study the development of upstresaur
moving pulees in the sonic regicn.

I - THE TRAPPING OF FULSES AND THE FORMATION OF SHOCKS -
IN A DECELERATING TRANSONIC CHANNEL FLOW

The Propagation of Finite Plane Disturbances

Superposed on a Channel Flow

General equations.—~ An analysis similar to Riemenn's can be
applied to the case where plane disturbances are superposed on a
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one-dimensional flow field. (A one-dimensional flow field is one
where the variations in velocity, density, etc., perpendicular to
the flow direction, are negzgligible compared with those in the flow
direction.) Consider the field of flow in a stralght chennel of
slowly varying cross section S. The equation of continulty becomes

ae + ag p'D.S! =
Jt ox

or
Blog.p+30°+.3£+.@.-_}_%_§=o 9
gt Yo% ox u ax ()-

Multiplying equation (9) by *a and adding to equation (1) yields

%mtsﬂ+(utwiwf5ﬂiuﬁ%§ﬁ=o (10)

An equilibrium (s*eady) flow in the channel with quantities denoted
by subscrivt o willl bs assuned. Priued quantities will denote
departures from this equilibrium. Thus

u=u,+u'
o] | (11)

e

1
a=ao+aj

5

58') + (ug t ag)it(ug t 565) ¥ uga,tL

S|
~~
s-—
-+

+

‘_(u_ ) + (v ta]_(__.l__l+(u'1-a)d(u-5ao)

4

dx

By substitution of equations (11) in equation (10),"_ there 1s obtained

(u'a' + u'ao + atu)Ll_Q.E._S =0 ) ' (12)'

|
i

Uledid g

»
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Note that, where Mg = ==,

and

Dropping the second and third texms of equation (12), which cancel
each other (equation (10) for steady-flow cess), gives

- i dx

Bt 50+ [lag £ o) + (o' 27y AL L2

+ ('t a1z Ido);%ox- * (Mo - l)(g___ i _‘a_ . a)dué o (13)
Yo Mo

I:f' the qua.nti+ies P end § are introduced, where now

P=u'+5a'" and Q =u' - 5a', the equations (13) ‘bacopne

& +2\BP - + 2 )dll
ST+ u°+a°+u3 )-a—;-l-(l }40)(32..5__0. T"i.;c

2 2 ‘au
2 . = P+ P~ )
+ (M, 1)(2-5—9—0 + Bl s B Q) =0 (14)

and

e . au,
- M e l (P + P + Q P = o = ’
( ) oM, "ﬂ)"’g == (13)
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Reflections in a velocity field.- The equations (14) and (15) .
indicate that disturbances will bo propagated upstream and down-—
stream in the channel flow as was the case in Riemann's problem.
Because of the last two terms in these equations, hewever, a pulse .
moving in one direction will reflect dlsturbances moving in the
other direction, Perhaps it would be possible to solve these
equations numerically for any particular case by the method of
characteristics. It will, however, serve the general purposes of
this paper better to derive general epproximations rather than more
accurate numerical results for spocific cases. I

In part I of this treatment, the refloctions will be neglected;
but before this assumption is introduced, an evaluation of the order
of magnitude of these reflectlons will be mede to provide an
indicatlion of the eryor thus introduced.

Firat, consider a pulse moving upstréam into an equilibrivm D
velocity fleld; that 1s, containing no downstream-moving disturbances.
Consider & point moving with the downstream velocity of propagation

u+ 8 =Uy + 80 + E ; EQ. The rate of change of P at this m;;

observation point will be denoted by g% and is equal to

%% + g% %ﬁ. The rate of growth of P while this point crosses the Q
pulse is thus given by the sum of the first two terme of equation (14);

that is

9P _ oP 3P+ 29) SR : .
it - 5t + (uo + 8g + 5 ) S

i

_ dug 2 LP+Q P - Q I
[(1 - M) E —--5-—- + (M2 — 1) ( 26% S T

In order to obtain a simple estimate of the reflections produced in
the sonilo region of a channel, 1t will be convenient to introdnce
the following epproximations in the right-hand side of this equation;
(1) P is negligible compared with Q, (2) My + 1 = 2Mg = 2,

2
(3) E%EZ is negligible compared with %, Thus, there is obtained

du,
8p Yo , 2
it = Tax © 5(1 Mo)
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Now, integrating over the whole of an upstream moving pulse gives
for the value of P at the rear (which will be the maximum value
of P if Q is all of one sign throughout the pulse)

-~ - d
oulse

Since ihe provagation velocity is close to an, dt = —%E (for the

voint undsr observation), end approxinately

P -2 (1 - M.)Q duy ax
rear 5 250 f‘x
Q'pulse

For example, for & square pulse - that is, a pulse for which Q = Const.
from a point where the steady velocity is u, to & point where it
is u, + Au,, there is obtained

ACEN
Prear Q __; =(1 - )av

vhere (1 - Mo)ae
The relative magnitudes of P and Q In this problem can be

means sn averegs over the reglon of the pulse.

illustrated by a numerical exemple. If (1 - Mo) = 0.1
Mo -
and _Ta: = 0.1, then Prear: - 500'

It thus apnears thet for short upstream-moving pulses in the
sonic region, it will be possible to neglect P 1in comparison
with Q in squation (15) if there are no downstream-noving
distvrbances present initially.

Congservation of pulse area.- If reflections are neglected, the
provagation of an unstirem:i-moving or @ pulse can be studied with
the aid of equation (15) alone. Since this trsatment is primerily
concerned with the sonic region of charnels,-it will be possible
to obtain siiimle apnroxinations ty neglecting the fourth term of
equation (15), which contains the factor (M 2 - 1), in comparison
with the third term. FEliminating this term, veplacing 1 + M, by 2
in the third term, and neglecting P, compared with Q, gives
for equation (15)
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$3+ (o - 20+ 3%@ %2 -0 (6

A
From Riemann's equations, it was shown that the quantity k/ Q dx

(pulse area) is constent in the isentropic propagetion of pulses
in a homogeneous gas. By the use of the approximate equation (16),
it can easily be shown that the same rule is approximately true for
propagation in a flov field. Equation (16) can also be written

X, B

T Q/3 Q +ug - agj} =0 (17)

Ve

as can readily be verified by differentiation (for values of =&
~close to 1). ._

Integrating this equation with respect to x over the range x4
to x, gives '

~%p
1

.@./ de+[q(3.§1+u_a_
o o
3%/ x, 52 )ﬁ %

If the integration 1s taken over the whole of a finite pulse, the
second term vanlshes and the pulse area / Qdx remains constant to

the order of accuracy of equation (16). It can also be seon by

taking the point x, ahead of the pulse where @ =0 In equation (18)

that, at an arbltrary point Xy Q prnulse area flows through at
the rate ,-Q(39.+u -a)‘ .
*o

=0 (18)

It cen be shown that, as long as only upstream-moving disturbances
are vpresent, this rule - conservation of pulse areea In upsiream-
moving pulses - is not affected by the vpresence of shocks (if doimstream:
moving dlsturbances produced by the shocks are neglected.) For the
case whers the shock is not part of the initial equilibrium flow ( that
is vhere it develops in an upstream-moving disturbance) and P = 0,
it is shown in appendix B (equation [B4))that the velocity U of
vropeagaticn of a shock wave is

U=uo-ao+%(Ql+Q2) (19)
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wvhere values of 'Q before send after the shock are denocted by
Ql and 02’ respectivaly.

If now it can be shown that the pulse area entering the shock
ver unit time is equal to that leaving the shock, the pulse
conservation rule will be sstlsfied. The pulse area entering or
leaving the shock is the sum of ths pulse area passing through a
stationary polnt and the pulse area cvertaken by the shock; thus,

. 1t must be shown that

Uql-ql<%%+uo-ao) =UQ2-Q2(%%_+%-&°> (20)

If the expression (19) is substituted for U, this equation
1s identicelly satisfied, end thus, thls extenslon of the rule is
established.

Anothsr similer case which will be of interest in connection
‘with later considerations is that for an upstream-moving pulse of
small amplitude Interacting with a shock that 1s part of the initial
equilibrium flow. This case is illustrated in figure 1. It is
necessary to assume that the shock intensity i1s low (equilibrimn-—slnck
Mach number close to 1) to get a siumple result. It is also necessary
to neglect the variations with =x of the locel equilibrium velocitles
end velocities of soumd, in comperison with the dlsturbance velocities.
These changes, which are due to the changlng chamnel area, are
responsible for the establlity of position of the shock wave. Thus,

In other words, the effects due to the stability of the shock wave
are neglected as compared with the disturbance effects. The
circunstances under which this assumption is permissible willl becoms
clearer from the resulis of part II. If the stebility of a normal
shock 18 neglected, the velocity with which 1t moves under the
influence of a small upstrsam-moving dlsbturbance is calculated in
apvendix B (equation (B9)) to be simply

U= f‘a(Ql + Qg (21)

In addition to the contributions to the pulse area vwhich were
present in the previous problem, pulse area is contributed by the
fact that the shock 1s merely out of position. The equation which
must now be satisfied to demonstrate conservation of pulse area is
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uQ -Q(3?—]=+ + 8 + 2Ufu '-

VL B

where the subscripts 1o énd 2, denote equilibrium conditions

before and after the shock, respectively. Noting that approxi-
mately (see appendix B) -

1}

&
(¢}
o
o
s

and

w, =-a
1, 14 _ .3
- 5
ulo u2o
for Mach numbers clogse to 1 eand Introducing the shock veloclty
(equation (21)), satisfies equation (22) identically. Thus, the

rule of conservetion of nulse area appears to be a useful approxi-
mation with considerable generality. .

The pulse shape.- The shape of a pulse (that is, Q =as a
function of x) advancing upstream in a velocity fileld, in the
absence of downstream-moving dlsturbances, caen be studied in a flow

fleld by considering its x derivative gﬁ = ¢+ The verlation of

this quantity with time can be found by differentiating equation (16)
with respect to x. .

(oot B Rk ) 5

For the cage vhere the equilibrium velocity gradient is constant,
& .
that is Jo . 0, the behavior of the pulse shape can te studled

simply from this differential equation. Conslder the point under

Al

l
i|i|.|! ill

i

1
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observation to move with the wave, that is, move with the local
propagation velocliy. Let -Z% be the rate of chenge of € vwhen

the voint under observatlon moves with the propagation velocity H
then the preceding equation hecomes

%,§%+(uo-ao+%q>g§=-%e(e+h%> (23)

The' variables in equetion (23) can be separated. If the

a

dimensionless paramsters E = :%u-; and T = % t eare intftoduced,

ax an
eguation (23) cen bs integrated for -&-% constant to give
1 _
TP (24)

( 1+ :) 5 -1

vhers T is the dimensionless slope of the wave at the time = 0.

Positive values of T in equetiom (24) will represent acceleratmg
du
equilibrium-velocity f£lelds -a-fz> Q0] and negative values of T

will represent decelereting ffelds. Also, In accelerating flelds,
vositive values of E will represent expansions end negative
values will represent compressions, snd the opposite is true for
decolerating flslds. Equation (2&) is plotted in figure 2 for
various values of E.

It can be seen from this figure that the results are considersbly
different from Riemerm's. Thus, in an accelergting fleld, compression
waves must have & certain initlal steepness, E £ -1, or they will
flatten out in time. On the other hand, :Ln a clecelerat:‘.ng field,
expanslicn waves, inatead of flattening out (as occurs in Riemern's
cass) , apnroach & slope given by # = -1. It should be noted

thet E = -1 corresponds to & totul veloeity gredient %i— = - 9‘-}:&.

"rranped” nulses.~ The approxinates relations vhich have besn
develoved In the preceding sections can be uged to show that a
vulee ioving upstream in a uniforaly decelerating flow approaches
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a stationary state. Thus, the pulse area remains constent, the
expension phases approach the slope given by E = =1, and the
compression phases become shocks. As these developments take
vplace, the pulse advences to & position whero the provegation
velocitles of the shocks approach zero. When this position is

reached tho pulse will be said to be- trapped.. It should be pointed

out that the trapvved pulse is an ldealization and would not exist
in an exact treatment. The introduction of this concept mekes

1t possible to divide the history of & pulse Iinto two periods
vhich cen be consldered asperately. The trapping of compression
and exvension pulses in a decslerating transonic chamnel flow is
shown schenatically in figure 3.

The asymptotic result for expeansion phases of trappred pulses
E = -1 1is compared in figure L4 with the exact accelersting
equilibriun chamnel flow. It can be seen from this figure that If
all the velocitles involved are closs to ths local speed of sound,
the expansion phases are very close to the sccelerating steady flow.
It seems reasonable to infer from figure 4 that the differences
between the two curves are dune to the gpproximations introduced in
deriving equation (16) from the_exact equations (14) and (15)
(neglect of reflections and M- -1 terms). In other words, it

geems reasonsble to infer that an exact caleculation from equations (1h4)

and (15) would yield the exact accelerating steady flow. This
inference will be adopted in part II and the exact accelerating flow
will be used in place of the E = -1 result in calculations of the
shock velocities.

It will be valuable to calculate the order of magmitude of the
times in which the filrst-orier trapving processes take place. These
times will be compared with times in which the slower processes of
part II take placs. For sxample, the leading edge of an expamsion
wvave propagates upstream with the velocity vy - age. If x 18 the
distence of this leading edge from the sonic point of a channel,
then 1n a wniformly decelerating field (for M, close to 1)

U, = 8y = F 3= X. The equation for the approach of ths lsading

o 5 éx
edge to ithe sonic point is thus,

|

T

[a
joe )
=4

Q

gl

The relaxatiom tims for the approach is therefore “"“lEf"
.6.<u
5 dx



NACA TN No. 1225 17

A relaxation time for the slope of an expansion wave to approach
its equilibrium slope can similarly be found from equatéon {23).

u
If the slope is close to the equilibrium value ¢ = -k —Eg,
equation (23) can be written

( N duo
d + —_— ik
: =2 u°<e + 4 d%)

at 5 Tdx Tax
The relaxatlion time for this process is then ————}EE- or one half
.12(. __2>
5 dx

as large as that for the approach of the leading edge to the sonic
point. It is clear from figure 2 thet the formation of shocks from
" compression waves 1s a faster process end a shock 1s formed in a
finite time.

Application to ths Formatlon of a Normal Shock
In a de ILaval Nozzle

The theory Jjust developed can be applied to trace the formation
of shock waves in a de Laval nozzle. Consider the converging-
diverging nozzle shown schematically in figure 5. Suppose the back
vressure to be adiusted to such a value that the local speed of
sound is reached at the throat but not exceeded. The foim of
velocity distribution that would be obtalned 1s also shown schemati~
cally in figure 5. The smell curved reglon near the local speed of
sound in the velociiy curve which would be obtained in a practical
case has been neglected to simplify the argument.

It is known from nmeny experimental results that if the back
pressure is lowered further, a normal shock will form in the nozzle.
The fornation of this shock can be readily described by use of the
foregoing theory if ths velocity at the end of the nozzle is
sufficiently close to the speed of sound. It will be essumed that
the back pressure will be lowered continuously for a time and then
held constant. (It will also be assumed thet the back pressure
is not lowered enough to produce supersonic flow at the end of the
nozzle.) While the back pressure is being lowered, the velocity
at the end of the nozzle will increase. The space derivative of
the velocity disturbence created can be found from equation (16)
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if downstream-moving disturbances are neglected. Solving this

equation for gﬁl = & %% yields

b4 2
) - é u' duo au'
Qul .2 dx B (25)
O Ty ea +Bul oy -a 4 g '
5 5

It cen be seen from equation (25) thet some time before the expension

1
stops, g&? will. become negative. This result will occur when

é foy ulc o
5 Tax

gince the denominators in equation (23) are negative for subsonic
velocities.

t
A negsative value of %B- means that a compression wave has bheen
x

produced in the vrocess of decressing the back pressure to a new
steady value. (It should be remarked that mo such conpression waves
are started in the absence of a décelerating velocity fisld.) This
compression wave will travel uvstream and will steepsn as has been
shown previously (equation (23)) to form & compression shock. The
compression shock and the vwedge-shaped. erea ahead of 1t willl grow
by the addition of expension pulse area coming froin the rear of the
nozzle {pulse area is continually contributed since § # 0 at the
rear). Thoe shock will grow until its intensity eand its dissipatlon
ere large enough to reuch a condition where the nozzle flow is
again at squilibriwa.

The calculations on whilch figure 5 1o based ars given in
appendix ¢. The leading phase which originated while the nozzle
back pressure was falling can be calculated from squation (23) end
the Imown propagation veloclty of lts leading edge. The steady
phase which originates after the nozzle back pressure has again
become steady can be found by integrating equation (16), use

being made of the fect thaet §%~ = 0. for this phase. For the

cage congldered, an Infinite decelerating velodty gradient appears
at the point where the velocity firet reaches the local speed of
sound. The shock that follows is calculated step by step from
equation (19). The calculations used in plotting figure 5 are thus
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only a first approximation to the shock motlon. A more accurate
shock velocity calculation (by the methods of part II) would show
the shock to settle at an equilibrium position.

If the unsteady aspect of a channel-flow problem 1s consildered,
it is possible to see how shocks arise in the transonic flow. It
is qulte possible that en analysis of this kind could be extended
to two or three dimensions and to the flow over obstacles and that
if these extensions were made, the problem of the formation of
normal shocks In these more complicated casss could be greatly
clarified.

II - THE MOTION AND STABILITY OF SHOCK WAVES
IN A CHANNEL FIOW

Preliminary Consideretions

The trapping of pulses and the formation of shock waves in
decelerating chamnel flows have been censldered in part I. In the
cage of the central problem, the stability of smooth transonic
deceleration, thess calculations indicete that a trepped pulse
converts a narf of the channel flow to the accelerating steady flow.
The trapped pulses alwsys involve shock waves and if the approxi-
mations of appendix B are used for the shock velocity and if down-
stream wvaves created by the shocks are nsglected, it is found that
the entire pulse becomes stationery in the sonic reglon of the
channel. .

The occurrence of these trapped pulses in transonic decelerating
channel flow means that, to the order of accuracy of these calculations,
this flow has a kind of neutral stability to pulses coming from the
rear of the channel. Therefore, it will be necessary to meke more
accurate shock-velocity calculations before 1t can be decided whether
this flow is stable or unstable. In this part of the paper, the
motion of shock waves will be consldered more accurately.

It will be essumed that conditions at the ends of the channel
ere steady; that is, the shock veloclty will be calculated for the
case where the chamnel flow is out of equilibrimm (for exampls, where
& channel shock has been displaced by a pulse) but where no new
disturbances are originating at the end of the chamnel. Thus,
disturbancea will be treated by the methods of part I and these
more cumbersome calculations will be used to solve stabllity problems
which camnot be solved by the methods of part I.



20 ' ' ‘NACA TN No. 1225

The flow on the upstream side of the shock will not be related
in any way %o the shock position or motion becauvse any disturbances
croated by the shock will not move. upgtream es rapidly as the shock
does. It is therefore poesible to calculate the state of the air
at all points shead of the shock wave before the shiock motion 1s
detormined., For all the applications of the ghock-velocity calculations
that are contemplated in this paper, an equilibrimm flow (either the
originel equilibrium flow or the alternate one inferred to be produced
by a trapped pulse) will be essumed upstream of the shock wave.

In steady flow, once the conditions sheed of the shock are
knovm, it is pomssible to specify immediately from the Rankine-Hugoniot
reletions the conditions behind the shocks In unsteady flow, however,
since the shock velocity adds another umknown +o the problem, 1t will
be necessary to have another relation in addition to the Rankine-Hugoniot
relations before the shock velocity and the conditions behind the
shock can be specified. Since the conditions upstream from the shock
wave are already fully determined, this sdditional information will
be a relation between the variables of condition downstream from the
shock. The nature of this relation cen be brought out most eimply
by consldering a particular case, namely, the case of a channel
discharging into the atinosphere. It will be accurate enough to say
that discharging into the constent-pressure atmosphere is equlvalent
to a constant vressure boundary condition at the end of the nozzle.
If a P ' disturbance roves downstream in the chammel, 1t will of
courss, involve pressurs changes and, when the end of the nozzle 1s .
reached, this disturbance will be reflected as an upstream-moving
disturbance. Thus, it will be possible for a given P disturbance
to calculate the @ disturbance at the end of the nozzle. Now, '
epplying the lsentropic wave propagation equations permits the
extension of this information to regions upetream. Thus, in
general, 1f the downstrsam-moving disturbances at a point are known
and the boundary conditlons at the end of a chanmel are specifiled,
1t would be possible to calculate the upstream-moving disturbances
at the same point in the channel. More accurately stated, the
downstream-moving disturbances for a previous interval must be known
in order to calculate the upstream-moving disturbances.

These problems could probebly be treated accurately by the
method of characteristice and calculations of this kind would certainly
be desireble. However, for the exploratory purposes of this paper,
an approximation will be introduced to meks 1t possible to reduce
these calculations to a closed form. Thus, the raflection conditim
will be applied immediately behind the shock instead of at the end
of the chennel, For example, in treating the constant-pressure end
condition, the pressure immediately behind the shock will be assumned
to be the subsonic equilibrium pressure appropriate to the shock
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position. The reflection condition, in combination with the
conservation laws, may then be ussd to sbtaln an algebraic expression
for the shock velocities. Thise procedure introduces the following
errors: First, the chenges in the strength of the waves in moving
downstream to the channel end and in moving upstream to the shock
are neglected. Second, the time required for a wave to move from
the shock to the” channel end and for the rsflection to move back

to the shock has been neglected. In cases where the channel
following the shock 1s not too long, this effect will not be serious
for shock Mach nuunbers close to 1, since the shock velocities

found are smaell compaered with the local propagation velocitles.

Reflection Conditlons

The analysis will bs mede for three tyves of reflection
conditions: constent velocity at the channel end, no reflections,
and constant pressure. These cases will provide a considerable
variety of reflesctions; thus a method 1s pPovided for estimating
the significance of reflections in these nroblems and, hence, the
significence of the two types of errors Jjust mentiomed. A further
discussion of these errors will be given after ths shock-velocity
calculations have besn presented.

Ccnatant-velocity chamnel exlt.~ Constant wvelocity at the
channel exit could be approached practically by erranging & channel
to discherge into & mechine which takes in a constant volume per
unit time. If, in such a setup, & disturbance moves down the chamnel
from the shock wave, 1t will be reflected from the end of the channel
in much ths same way as a sound wave is reflected from a closed
organ~pipe end. The velocity will thus remain constant at the chammel
end end, in this case, u' =0 at the end of the channel and P = -Q
at that point. As discussed previously, this boundary condition will
actually be applled immediately behind the shock.

The shock relation is introduced now in the form

. Vle
2
V1V2 = ‘—6— + % al
26
v.2 (26)
2 % 2
=76 G2
where Vl' end a, are the veloclty and veloclty of sound immediately
upstream of the shock in coordinates fixed with respect to the shock
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wave and Vo, and ap sre the velocity and velocity of sound

inmedlately following the shock in these coordinates. The notation
to be uged in comnection with problems of the motion of shock waves
is 1llustrated in figure 6. Returning to a coordinate system fixed

with respect to the channel yields for equation (26)
N 2 . 2
6u1-U)w\:2-U>=<ul-U) ¥ 52,

= (u2 - >? + 5&22 : en

The constant-velocity reflection condition ylelds the information

W, =0 and hence uy = wp,. Using this Information and eliminating

-
&y between the equation (27) aives the following solution for the
shock velocity.

U= 2uy  + 3up_ ¥ //(?ul“ + 3u2“>2 - 30w wp * 25&52 (28)
2| ¢ & YN g £

It should pe pointed out that the plus sign corresponds to the
expansion shock which violates tho secand law of- thermodynanmics
and, therefore, the minus sign must be used.

Nonreflecting channel exit.~ The conditlon where no waves are
reflected from the rear of the chamnel could be approached in the
case vhere the region of the chamnel containing the shock wave
mnder conslderation is followed by a sonic throat and & supersonic
region. In this case, the only reflections present would be those
produced by the veriatlions in channel area between the shock and
the throat. If all the Mach numbsers are oloss to unity, the

variation in channel area would be smell and, therefore, the reflections

should be small.

The absence of reflections mesns that no upstream-moving
dlsturbance will exlst behind the shock in the absence of external

disturbances. The reflection condition in this case_is then QQ = 0,

Applying this relation immedlately behind the shock gives

@ = u's - 5a's = 0, Using this information in equations (27) makes

it again possidble to eliminate u', and a'p and to obtain

U+ AU + BUR + CU+ D = O (29)
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wvhere

X 11l - %
A= "1'(\10 e " 10 M T 8 a2§>

N 2. 2,12 2 Ly 2

D= w, v, *tT W, B, -8 +"“1“2a 2‘1&2%
(25 g% 5 g 0t 5 L 2

Here again, it is possible to solve for U 1if ulé end ql§ are

known. Of the four roots of equatlon (29), two are imaginary end
one corresponds to the sxpansion Tshock &0 that only one has
vhysical significance.

Constant-pressure charnnel exit.- The third boundary condition
which will be considered is the case of constant-pressure channel
exit., This condition could be aporoached in & chamnel that
discharges into the atmosphere. Transferring this boundary condition
from the chamnel end to the shock position gives the information
that the vpreassure behind the shock is the same as the pressure which
would exist at that point in the steady flow. The constant-pressure
boundary condition can thus be stated as D = peg. Using the

2%,___%&_____“1-‘[}}2_;, - (30)
Py alE 6

shock relation

gives an immediate solution for the shock volocity,
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The Stability of Smooth Deceleration through

the Spéed of Soumd

le

In the case of a channel flow involving smooth deceleration i s
through the speed of sound, it was found in part I that a pulse
coming from the reer of the channel was trapped In the sonic -
reglon of the chanrel. This result means that, to the order of )
accuracy of these calculations, the flow was neutrally stable to
pulses coming from the rear and that more accurate calculations
are needed to decide whether this flow is stable or unsteble.

Two kipds of apnroximations were made in deriving the trapped-
pulse result. First, the reflsctions produced by isentroplc waves
and the terms containing M2 = 1 as a factor in equations {1k4)

- and (15) were neglected. The expansion waves were found to replace
a part of the original decelerating equilibrium flow with a flow
close to the equilibrium accelerating flow which is also possible
for this chamnel. (See fig. 4.) It was then inferred that exact :
calculations would yileld the exact accelerating equillibrium flow. -
If this iInference l1s coirect, the exsct final state of an expanslion =
vave has beeh obteined by this method so that the epproximations . .
introduced in the calculations of the expansion waves wlll have no .
effect on the final results. .

Second, rough approximations to the shock velocity developed
in eppendix B were used and, with these approximations, it was ‘
found- that the shock neither consumed the pulee nor mede it grow.
Hence, any change'in the shock velocity frem these approximate
values would lead to consumption or growth of the trapped pulses | )
and, thus, the more accurate shock-velocity formulas Just derived -
can be used to determine the stabillty of emooth deceleration
through the speed of sound. : -

For the case vhere the equilibrium flow is smooth deceleration
through the spesd of sound, the quantities appearing in equetions (28)
through (30) can readily be evaluated and the shock veloclty calculated.
It will be seen from these equations that the shock velocity depends
only on local conditions at the shock position. These local
conditions, of course, are all functlons of a single parameter and
the parameter used to present these results 1s the Mech number
immediately eshead of the shock.

Results found for the three reflection conditions are plotted .-
in figure 7. It will be seen that the shock velocity is always _
negative; that is, the shock always moves upstream. Thus, in the
case of the tranped expansion pulse {(fig. 3), the shock will move
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upstream and sventually will consume the pulse. Smooth deceleratim
through the speed of. sound is therefore stable to exvansion pulses
coming from the rear. On the other hand, in the case of the traovped
comnresaion pulse, the shock wave will again move upstream, and in
this case, the pulse will continuously grow (at least as long as

the shock wave 1s in the converging part of the channel) . Thus,
smoolh deceleration through the speed of sound is unstable to
convrension pulses coning from the rear.

Stability of Shock Position in Channel Flows

The previous discussion shows that, in stable chamnel flows,
deceleration through the speed of sound will be accomplished in-&
shock wave.. Consider now a converging-diverging channel: There
are, in general, two pcssible shock positions which will yield
equilibrium flows; that is, the shock cen be elther In the con-
verging or diverging part of the channel. Experimentally, the
shock is found to be stable in the diverging vart of the channel
end unstable in the converging part of the chamnel. It will De
interesting to apply the formulas just developed to examins this
problem theoretically.

A more precise statement of the problem which will be studied
is as follows: Consider a shock wave in a chamnel flow. Conslder
that a small pulse has displaced the shock wave by a short
distance . Since only small disturbances will be considered, 1t
will be convenient to use a linearized form of the shock-velocity
equations. If now, the quantities u, a, et cetera are expsnded in
Taylor series in & ebout the equilibrium shock position, only
the first-power terms should bs rotained to obtain a linearized
equation. Furthermore, since the disturbances are small, the shock
velocity cen be assumed to be small compared with the local velocitles
or velocitiss of sound and higher powers of the shock velocity can
be neglected. Performing these ovnerations permits equations (28)
through (30) to be written in the form

g
Lrrg=o0 (31)

vhere %ﬁ is jdenticel with U and the relaxation time T Ffor the
t

various reflection conditions 1s as follows:
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Constant velocity!

du 2111 + 3'!12
T s = 2 2 (32)
dx 1 " 2 _ l)
2 o \M,

No reflections:

2 2 2
dulé 33U, - %as + 3u20 + &, <2ulo + 3u20>
T ax = (33)

% ueO(Mll:)a i l> (ueo * an)

Constant pressure:

a
ulé -10
T a = 7'(1 e . 2] (3"")
X 20 }JQO
2 i ()
11 - %My 5 ey M1
(4, R ek e
o Moo -1 M 2.3
(] Q

1
Values of T dxé ars plotted in figure 8 against the equili'briwn
Mach number shead of the shock. Figure 8 shows that 7 -——l-é- is always

vositive and the shock position is therefore stable (positive T)

du

1

vhen __:E. e is negative. The
dx dx

shock position is thus staeble in diverging channels and unstable in
converging channels in agreement wlth experiment.

bl
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GENERAL DISCUSSION

Discuseion of Simolifying Assumptions

It should be vointed out again that the best way to indicate
the effects of the simplifying assumptions introduced in this paper
would be to repeat some of the calculations made herein by the
method of characteristice and to compare the results obtained with
those obtained in this papsr. Since such calculations are not yet
avellable, however, 1t would be desiraeble to ses what information
can be obtained from the results themsslves in order to dsfine their
range of validity. This discussion 1s given with the central
vroblem - stability of smooth tremsonic deceleration - in mind, but
1t will be clear that similar conclusions could be reached for cases
vhere the equilibrium flow involves a shock.

The assumptions of nart I led to the tranmped-pulss result and
t» the inference that exmansion waves revlace the original uniformly
decelerating flow with the steady acceleraiing flow appropriate to
the channel. Thess assunmmtlons have already been dlscussed in the
section on “he stability of swooth deceleration through the speed
of sound, and it has been nointed out that if this inference is
adopted, errors due ro the assuwntions introduced to facillitate the
calculations of isentrovic wave oropagation in part I are sliminated.
The shock velocity foraumlas of anpendix B ars, however; only rough
approximations.

In part II, more accurate formulas for the velocity of the
shook were found, which indicated that the trapped expansion pulses
are consumed by the shock and that the trapped compression pulses
continually grow as a result of the shock motion. The history of a
pulse has thus been divided into two intervals. During the first
interval, the consumption of the pulse by the shock has been neglected.
During the second interval, it has been assumed that the pulse is
fully trapwed. There will bs, of course, an Intermediate interval
during vhich the rates of the two processes are comparable. If the
order of magnitude of the times in which a pulse is consumed by the
shock is much lerger than the times that a pulee requires to appro&ch
the trapved state, the intermediete interval will not be very important.,
The Importance of this intermediate interval can therefore be clarified
by calculating the fractlon of the pulse consumed by the shock motion
in the time required for the trapping processes which 1ls of the order

of . Calculations of this kind are presented in figure 9.

dun

éx
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It can be concluded from this figure that the intermediate interval
does not play an important role so long as the pulse erea of the
initial pulse 18 not lerge enough so that high Mach number shocke
are involved.

A third group of errors was introduced iIn part II by applying
the reflection conditions after the shock instead of at the end of
the channel. The significance of this approximation can be estimated
by comparing the resulits obtained in figures 7 and 8 for the various
reflection conditions. The changes in reflection condition considered
are seen to produce only a small change in the results where the
shock Mach number is close to 1. Therefore, 1t seems likely that the
results would not be greatly altered if high Mach number shocks are
not involved by charfges in the strength of disturbances in propagating
between the shock and the end of the channel.

The time requirsd for disturbances to vropagaete between the
shock and the end of the channel has also besen neglected and the
significance of this approximation can be brought out by considering
the sequence of events which would occtr In the case whers a very
long chammel follows a‘siable channel shock. Assume that a pulse
moves upstream end dlsvlaces the shock. The shock then returns tfo
equilibriun at a rate which corresponds to the no-reflections case.
A downstreen-moving mulse will be given out by the shock while 1t
is out of equilibriwn. When this pulse reaches the end of the
channel, 1t vill be reflected as an upsiream=moving pulse and will
now disnlace the shock in the ovwosite direction. (See fig. 8,
constant-pressure. or constant-veloclty end conditions.) This process
will reveat indefinitely and there is the vossibility, which should
be investlgated, that a divergent osclllation could result in some
cilrcunstances. For the casss vhere this ogcillation does not diverge
(and 1t is clear from experiment that these cases are an lmportant
group), the application of the boundary conditions irmediately
behind the shock will suppress the demped oscillatory motion which
would be expected for long channels and results in g monotonic return
to or divergence from the equilibrium position.

Application to Supersonic Diffusers

An interesting application of the present analysis will be to
consider the maximum pulse which & supersonic diffuser flow with a
shock in a diverging charmel cen ebsorb and yet retwym to its
initiel configuration (that is, its initial shock position). Con-
slder flrst the effect of expansion pulses which will move the shock
downstream. As long as the shock is not moved beyond the end of
the diverging pert of the chamnel, it would be expected that the
stability found earlier would return 1t to lts original position.
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The effect of compression pulees strong enough to nush the
shock through the diffuser throat is more interesting. Aftey the
pulse has completely interacted with thé shock wave (that is, when
the trailing edge of the pulse has Just reach the shock), the shock
will be displaced by an amount which cen be readily estimated from
the rule of conservation of pulse area. The results of part I
indicate that the flow behind the shock wave will assume the alternate
(subsonic) steady flow possible for this chamnel. If the pulse is
sufficiently strong, the displaced position of the shock will be in
the converging part of the chamnel where the shock position is unstable.
There is, of course, an unsteble equilibrium position for the shock
in the converging mart of the channel and the displaced shock will
move away from this unstable equilibrium position. If now the dis-
placed shock position is downstream from the unstable equilibrium
vosition, it will move further dovmstrean and eventually return to
the divergingpart T of the chammel where it will again assume 1its
stable equilibriun position. On the other hand, if the dismnlaced
position is upstream from the unstable equilibrium shock position,
it will continue to move uvstream and eventually convert the super=
sonic flow in the converging vart of the chamnel to a subsonic flow.
Thus, *he supersonic flow with a shock in the diverging wmart of the
channel. is stable to compression pulses which are not sufficiently
strong to displace the shock beyond the unstable equilibrium position
in the cenverging part of the channel.

In the practical design of supersonic diffusers, it 1s desirable
to ensure that disturbances of & given magnitude (that is, a given
pulse area) do not force the shock beyond this limiting position.

It is, of course, also desirable that the equilibrium shock Intensity

be kept as low as possible. It appears, therefore, that diffusers

with a long throat region, which produce a velocity distribution such

as that shown in figure 10, should be considered. In this case, the
compression pulse area that can be absorbed by the &iffuser, that

is, the area ABCD, 1s increased without increasing the shock intensity .
However, it will be noticed that the skin friction would also be
increased in this way. Further investigation will be necessary to
determine the optimum throat length and shape.

Suggestions for Future Resesrch

It would be interesting to perform calculations on some of the
problems which have been studied herein by the charecteristics
method. For example, the central mroblem of this paper, gtability
of smooth deceleration through the speed of sound, could probably
be studled by this method. By starting with equations (&) and (15),
it should be possible to trace the propagation of an upstream-moving
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pulse. After & shock has been formed in the pulss, it would be
necessary, of course, to introduce the Rankine-Hougonoit relations

to trace further developnent. It would, In particular, be very
valuable to see whether more exact calculations confirm the inference
that a travped pulse converts a portion of a decelerating channel
Tlow to a steady accelerating flow.

An experimental check on part I of this theory could be obtalred
by the use of high-speed flow measurements. Consider a nozzle Iin
which the flow Just reaches but does not exceed the local speed of
sound. In such a flow, it would be expected that the trapped pulses
(or nearly trapped pulses) would be present due to natural or

artificial disturbances coming fiom the rear. It would be anticipated

that the characteristic triangular shape of trapped pulses (which
would be expected also if density were plotted instead of velocity)
predicted from this theory would be readily cbservable.

An experimental investigation of suversonic diffusers with long
throats should be conducted. Thie study would be particularly
interesting in the case of high Mach number diffusers with variable
geometry. When the geometry is variable, the only limitation on
the minimum shock intensity would be that adequate stability to
disturbances would be regquired. In many applications, & high dis-
turbance level will be present and en effort should be made in
experiments of this kind to simulate the actual dlsturbances which
would be present in the anticivated practical application.

As has been vointed out previously, a study of unsteady transonic
flow In two or three dimensions would probably do much o clarify the
problems of the formation of normal shocks in these flows.

CANCLUDING REMARKS

The propagation of unstream-moving pulses in the sonic region
of & nonviscous decelerating chammel flow has been studied. It is
vointed out that a fairly complete history of a small pulse can be
obtained by considering the two types of processes which occur
geparately {parts I and II). i

In part I, Riemenn's theory of the propagation of finite-
amplitude disturbances in & homogeneous medium has been extended
to the case whers upstrsam-moving pulses are superposed on &
decelerating channel flow. It 1s concluded that a pulse approaches
a trapped state in which it converts a portion of the channel to
the accelerating flow which is an alternate steady-state solution
for the channel. Shock waves are formed as the pulse 1s propagated,
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as in Rieuenn's problem. IFf it is assuned that the intensity of
the shocks 1s very small, then, to a first approximation, it is
shown that the shocks neithev consume the pulse nor make 1t grow.
It is also shown thaet vhen a pulss interacts with a weak shock
which forms part of the oviginal equilibrima chemnel flow, the
pulse is transformed into a displacement of the shock wave. These
facts can be suumed up in the following approximete rule: the

quantity k/ Qdx (called pulse area) is conserved in the propagation

of upstream-moving pulses in the sonic region of a chamnel flow.
The theory is spplied to trace ths development of & shock in a

de Laval nozzle as the back pressure is lowered. It is shown that
a shock forms inevitably if the back nressure is lowsred below the
value vhich first produces sonic velocities at the throat. It is
hoped that this calculation will be useful. in leading to the
solution of the more diffilcult problems of the formation of shocks
in two- or thres-dimensional-flow ovroblems.

The central problem considered in this paper 1s the stability
of channel flows involving smooth (shock-free) deceleration through
the sveed of sound. ¥or this problem, the analysis of part I indicate
that a pulse coning from the rear of the chamnel willl remsin
veriienently trapoed in the sonic region. Thue, from part I, the flow
has neutral. steblility to upsitream-noving pulses. Therefore, 1t
appears that a more accurate analysis must be made befors stability
nroblems can be considered.

-In mart IT, the assumvtion of weak shocks (used in deriving the
rule of conservation of oulse area in part I) is dropped end the
motion of shock waves ig conasidered nore accurately. It i1s necessery
to assume some type of reflection condition at the downstream channel
end before the oroblem of shock motlon is competely specified. It
ls made plausible from the results that 1littls difference in the
shock velocity occurs when & renge of reflsction conditions are
assumed. Therefore, for ths exploratory study of stability problems,
&8 simplified treatment of reflections la used which permits the
calculations to be made in clused form rather than by the laboricus
method of characteristics.

By cowbining the various reflection conditions with the
Renkine-Hugonliot relations, the velocity of shock waves in channel
flows which are out of equilibrium is computed. For cases where
a trapped pulse is superposed on & smooth deceleration through the
speed of sound, 1t is found that the shock always moves upstream.
Thus, trapped expansion pulses are consumed by the shock motion and
trapped compression pulses inesvitably grow. It is concluded, there-
fore, that smooth transonic decleration ig unstable to compression
pulses coming from the rear of the chamnsl.
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The stability to small disturbances of chdnnel flows which,
at equilibrium, involve shock waves is elso considered in part II.
It is shown that the shock position is unstable in converging
channels end is stable to small disturbances in diverging cheunels.
It is made plausible that the disturbance level can affect the
minimum shock intensity which can be attained in a practicel supeir-
gonic diffuser. The theory indicates that supersonic diffusers
with long throate may permit & lower shock Intensity and thus have
a higher efficiency when a high disturbance level 1z present.

Langley Memorial Asronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., November 18, 1946
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APPENDIX A
SYMBOLS
X distance measured along the axis of the channel; x dis taken
positive in downstream direction
t time
T:?}.IB
dx

u velocity in the x direction

a local velocity of sound

p local density

Y ratio of heat capacity at constant pressure.to heat capacity
at constant volume, equal 7/5 for room-temperature air;
this value of 7/5 is assumed througheut this report

¥,  Mach number (uy/ag)

ul = u - Uy

{ = -
a' = &a &o

u 4+ 5a for section on disturbances superposed on a homogeneous

niedium
P
ut + 5a' for the section on disturbances superposed on a flow
field '
u - 5a for section on disturbances superposed on a homogeneous
medium
R
u! - 5a' for the section on disturbances superposed on a flow
field
SE denotes derivation with respect to time when point under

observation moves with local propagation velocity
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<4 displacement of a shock from its equilibrium position
U velocity of a shock wave in stationary coordinates
v flow velocity in coordinates moving with a sﬁock.wave
S local channel area
= 8%
¢
E g ——
da,
dx
Subscripts:
8 stagnation conditions
o} local equilibrium flow conditions
cr equilibrium conditions for M =1
1 conditions zhead of a shock
2 conditions behind a shock
1, equilibrium flow condition upstream of a
shock at the eguilibrivm shock position
2, equilibrium flow condition downstream of
a shock at the squilibrium shock :
position 5 Defined in
_ figure 6
lg equilibrium supersonic flow condition
upstream of a shock calculated at
the displaced shock pogition
2§ equilibrium subsonic flow condition

downstream of a shock calculated at
the displaced shock position ]

A bar over a quentlty denotes & lower limlt of Integration

iy
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APPENDIX B

APPROXIMATE FORMULAS FOR THE VELOCITY OF PROPAGATTICN

OF SHOCK WAVES FOR USE IN PART I

The exsct camputation of sheck velocity, in general, Involves
cumbersoms algebre; therefore, for use in part I, approximate
expressions will be developed for the shock velocity. First, con-
slder the case whers an upstream-moving disturbance involving a
shock is superposed on & smooth steady flow u,. Conservation of
energy across the shock can be written

+ 58-1 = v2 + 55?_ . (Bl)

where the vslocitles are measured relative to a coordinate system
moving with the shock veloclty U. Returning to the former ¢convention
of measuring velocitles relative to statlionary coordinates gives,

for equation (B1l)

(u - )2 + 52, = (wy - V)2 + 50,2 (2)

Introducing the steady flow and disturbance quentities, as befors,
glves

u02 + 2u'luo + u'12 - 2(u, + u'y)u + T+ 5&02 + 10aoa‘

1 2

+5al

1

=’ + 2u'2u° + u'22 - E(uo + u'2)U + T+ 5&02 + 10aa'y + 53_'22

o
B3)

If only upstream-moving diéturbances are present, P =0, u' = -5a',
and equation (B3) cen be simplified to
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In thils calculation downstream-moving disturbsnces created by
the shock i1tself have been neglected.

The case where a steady flow Involves a shock and where gmall
upstream-moving disturbances interact with the shock also ylelds a
simple result. In this case, the steady flow velocities on the two
sildes of the shock are different and will be denoted by ula

end u,... (Ses fig. 6.) Equation (B2) can now be written
N} b

L 24 2u'lu + u'l2 -2 + u'%>U +T° + Seq 2 + 108, a'l-+'5é

g e g £

1 2
1

=u22+2uf-u2 +u’22-2<u2 +u'2)U+U2+5a22+10a2 a'c +5a's

g g ..
S

Since the disturbances are now assumed small compared with the corre-
sponding steady flow quantities, the shock velocity will also be small
compared with the steady-flow veloclty. If second_-grder small
quantities are neglected end it is noted that u, = + 58y £ = wp 2 4+ 5g, 2

equation (B5) can be written § g g | g

upgu'p - U’y + Sepa'p - Saya’y

- 1
oy T g

If only upstream-moving disturbances are assumed to be present,
Equation (B6) can then be written

U = (B6)

- LI PR
uln 5al and u2 5,5.2

2 Uy, - u
S
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If the variation of the steady flow velocltles with 3 is neglscted,
equation (B7) can be written

U=.22(32_0_.__f?.9)+‘% Bp " Mo (88)
: u2° ul0 ulo "2,

Thus, in going from equation (B7) to equation (BS) effectively, the
effects due to stability of the shock wave have been neglected Iin
comparison with tha disturbance effecte.

A 1imiting valve of the guantities in parenthesis in equation (B8)
as all the velocitles aporoach the local speed of sound & can be

cr
found by differentiating the steady-flow relationship

u, 2 + 55202 - 58,2

O

Thus, there 1s obtained, 1f Au,; = v - 8oy 8N4 Any = 85 = 8oy
o} ) 0

8oy Au.2° + Da,.. AB‘EO =0

or
' Aulo
= -
Aa2 5

(]

Similarly, differentiating the shock relatlon

2
w = &
172, % s
glves
Ay = =A
1, L] o

From these first approximations, it is found that, for values of M
close to 1 :

Y2, "% _ .3
0y o tup >

(o] (o}
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end, similarly,

Thus, equation (BR) becomes

U= 2(Q) + %) (89)
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APFENDIX C
CALCULATIONS OF THE FLOW SHOWN IN FIGURE 5

For purposes of discussion, the disturbances will be divided
into three pheses: (1) a leading phase which originatos while the
pressure at the end of the nozzle is falling; (2) a steady phase
which originates after the nozzle back pressure has reached a
stoady value; and (3) a shock phase which appears, in tho case
agsumed, at the Juncture of the two previous phases.

In order to simplify the calculations of the leading phase,
the rate of pressure drop (or volocity increase) at tho nozzle end

was chosen to meke ¢ or %‘c—'- constant. The leading phase thus |

appeers as & straight line end cen be seen from equetion (23) to
remain a straight line as long as the dlsturbance remains in a
uniformly decelereting field. The motion of the leading edge of

the disturbance in a short time At will be At{u, - ay). The end
point of tho leading phaso can bo followed similarly when the steady
phaso propagation has been calculated.

In the steady phese, no changos are being propagated in elther

direction; hence, %}é.'. = 0. Thus, a single curve will be an envelope
for the disturbances at successive times. This curve can be found

!
by intogreting equation (16), while meking use of the fact that -glbl- = 0.
Equation (16) can then bo written

_6%

du' 5 dx

ax & (c2)
uo-ao+5u

du
Tor the nozzle assumed -&9 ig a constant which will be denoted

by %-, then, since M, is close to l

-

u

ovao'sg%
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u.
Qllﬂ-——z-——-—
dx !

5
1+D <

-

Thistequation cen be written
2 dut% u' d&x + dbu' du' = 0

and?integrated to give (with quantities referring to the lower limit
denoted by bars)

xu' - xa! +vl%§f§ - l%}ﬁ% = O

~ From this equation, u' can be obteined as a function of X
from the known value of u' at the end of the nozzle. Thls result
has been plotted as the envelope in figure 5. It will be noticed
: -that tho slope becomes infinite at the point where the steady-phase
curve reaches the local, gpeed of sound. Thils result cer be readily
verified from equation (Cl) where the denominator of the right-hand
-glde venishes at the local speed of sound. This point, then, isg
- where & shock first forms. The propegetion of the disturbance up to
the point where & shock forms can now be readlly calculated. Onee
formed, the shock will connect the leading phase with the steady
phease.

The shock position and intensity at any time can be calculated
step by step as follows: First, the leading phase is determined
from the known propagation velocity of its leading edge and its
slope as found from equation (23). Second, the shock position is
detormined by adding to the previous shock position en incremont
corresponding to the shock velocity (equation {B4)). Third, the
ghock is then a verticeal line (in fig. 5) connecting the leading
phase with the steady phase at the known shock position.

| b

.

|

L

4
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(a) Disturbance approaches shock.
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Original velocity
distribution
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x

(b) Interaction of disturbance with shock.

Figure le= Thé interaction of an expansion pulse with a nozzle
shockes The analysis of part I shows that the pulse area
which disappears on the downstream side of the shock 1s equal
to the pulse area which appears due to the shock displacement
on the upstream side of the shock., Notg that the pulse areas
plotted here are %f Q dx since u' = g: .
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Figure 2.~ The propagation of
sonlec region of a channel,

upstream-moving pulses in a uniform
Moving to the right for socelerating

flelds or to the left for decslerating fields, the slope changes
of a wave as the point under observation moves with the local

propagation velocity are found.

in an accelsrating flow field, a compression wave must have a

certain initlal steepness
form a shock.

tend to approach the slope

E < ~1,0 before it will steepen to

Also, in a decelerating fleld, all expansion waves

a
E = «1,0 or %=-Eug. These

effects are 1llustrated schematically in figure 3 for a decel~

erating field.

In oontrast to Riemann's results,

1225

L3
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< Original
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pulse pulse
N
Equilibrium flow < \
x NATIONAL ADVISORY
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Figure %.= Schematlic illustration of four successlve poaitions in the
progress of expanslon and compression pulses in a uniformly decel-

erating field. The pulse area is conserved and pulse shape approaches

an isosceles triangle, When the leadlng portlon of the expansion

pulse or the trailing portion of the comprssslon pulse aPproaches the
1

local veloclty of sound, the pulss gpproaches a "trapped® state.
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Figure li.~ Comparison of the velociity dlstribution
for the trapped expanslon wave with the accelersting
equilibrium flow for the same channele
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Initlal formatlon of shock

Nozzle end

x NATIONAL ADVISORY
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Figure Se= The development of a normal shock in a de Laval nozzle
as the back pressure 1s lowered at the nozzle ende The envelope
curve ia calculated in appendlix C, The successlive expanslon wave
positions are calculated by finding the propagation velocities of
the end points, The time Intervals between successlive positions
are equal up %o the formation of shock and double thereafter. The
shock veloclity is calculated from the aspproximate eguation (El).
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cr
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Equllibrium = Y,
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X

Figure 6e~ The notation used in shock=velocity problems.,
For the case where no initial shock is involved in
the equilibrium flow u, = W = ... Explicit defle=

1o o cr
nitions of the subscripts gre given in appendix A.
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Constant preasure >

(equation (30))
Constant velocity \>/////// '
(equation (28)) iy

o -
No reflections ,//,

{equation (29))

NATIONAL ADVISORY
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1.0 1.1 1.2 1.3 1oy 1e5 1.6 1.7
Shock Mach number

Flgure Te= The veloclty of shock wavea in trapped pulses for the case
where the original equilibrium flow does not involve shock waves,
The shock velocity 1s negative and thus, the shock always moves
upstream, consuming expansion pulses and making compression pulses
grow indefinitely, Computations are madé for ag = 1117 feet per
gecond, :
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Reflection condition at
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- No reflectlons
\ (equation (33))

Constant veloolty
6 L R {equation (32))

Constant pressure
(equation (3l))
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1.0 1.1 le2 1e3 Lol 1¢5 1.6 1.7
Equilibrium-shock Mach number

Figure 8.- The relaxatlon time for the return of a shock to 1ts
equilibrium positlons The value of T 1s computed from the

linearized shock motion equation %% + TS =0, The value
of T 18 seen to be positive (stable shock position) for
duy

sz— >0, that 18, for diverging channels, and negative

(unstable shock position) for converging channels. For com-
parison, the relaxation time for the approach of & pulse to

1
the trapped state 1s ——6_&1_6— shown by the dashed line.
“5ax
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Fractlon of pulse consumed in time,
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(Caloculated for
no-reflection case,,
equation (29))
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Shock Mach number

L 4
Figure 9.~ Fraction of the area of a trapped pulse which 1s con-

sumed in the time —jgt;- e This result indicates that if the

dx

shook intensity is small enough, only a small fraction of the
pulse 1is consumed before the pulse 1s fully trapped., In such
cases, the division into trapping and consumption processes
will be justified,
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Equilibrium normal
shock position
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Figure 104~ Suggested long-throat supersoﬁic diffuser, The
limiting compression pulse that could be absorbed by this
dirfuser would have the pulse grea, ABCD., Note that the

pulse areas plotted here are %,/ﬁQ dx since here ut = % .
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